• Switching Dgraph to a Liberal License

    Last year, we had switched Dgraph license to AGPLv3.0, considering reasons like the ability to monetize in a competitive environment. In particular, The threat of duplicate commercial services and enterprise features built by others without paying anything back towards the development of the open source version. This remains a credible threat; nothing has changed in that regard. What has changed is that we realized that due to our switch to AGPL, developers who were part of big companies became unable to use Dgraph, solely due to a licensing ban within their organizations.

  • Releasing Dgraph 1.0: Production-Ready Graph Database

    Dgraph started around end-August, picked up steam in mid-October, and v0.1 was released in early-December, 2015. From one, the contributors grew to 46, with the project amassing over 4000 Github stars over the past two years. 2190 commits (we squash our branches), 277 branches and 25 releases later, we’re proud to announce that Dgraph has reached v1.0, our first production-ready release. To give a bit of a background – Dgraph, as a graph database, is designed to excel at the weaknesses of traditional relational databases: traversing relationships and efficiently executing complex joins at scale.

  • Open Source Alternative to Amazon┬áNeptune

    Amazon just announced their new graph database service, called Amazon Neptune. As per a TechCrunch article, Amazon Neptune has been optimized to handle billions of relationships and run queries within milliseconds. Neptune supports fast-failover, point-in-time recovery and Multi-AZ deployments. And you can also encrypt data at rest. This is very exciting news for the entire tech ecosystem. It clearly shows that graph databases are going mainstream. Already many tech companies are using existing graph solutions or building their own graph-like systems.

  • Releasing distributed transactions in v0.9

    It all started with a Github issue. At Dgraph, we really care about user feedback. Most of what we’ve built starting January 2017, has been based what our community (that’s you!) told us. The biggest contribution that we get from our community, is in the form of feedback. We’ll forgo any code contribution for quality feedback based on real-world usage. Since the beginning of Dgraph, transactions were road mapped as a post v1.

  • Loading close to 1M edges/sec into Dgraph

    We’re seeing more and more users who want to load massive data sets into Dgraph. Many users want to load billions of edges, and some even want to load up to 50 billion edges! When we heard about the size of these datasets, we knew we needed to have a solid data loading story so that we could support the most extreme demands from our users. In a previous blog post, we discussed some of the challenges that we met on our journey towards loading massive datasets into Dgraph.

< Previous Page 1 2 3 4 5 6 7 Next Page >
Join our community